Processing math: 100%

Library CT.Instance.Functor.HomFunctor

Require Import CT.Category.
Require Import CT.Functor.
Require Import CT.Instance.Functor.Bifunctor.
Require Import CT.Instance.Category.Opposite.
Require Import CT.Instance.Coq.Category.

Hom Functors

A hom functor for a category C is a functor Cop×CSet.
In our case, we use CoqType in place of Set.
The functor must send (c,c)ob(Cop×C) to the set of morphisms cc in C, and send a pair of morphisms (fop:cd,g:cd) to the function HomC(c,c)HomC(d,d) which sends (q:cc)gqf.
Section HomFunctor.
  Context {C : Category}.
  Variable (F : Bifunctor C (C^op) CoqType).


End HomFunctor.